Meso-Scale Modeling of Amorphous Metals by Shear Transformation Zone Dynamics
نویسندگان
چکیده
A new meso-scale modeling technique for the thermo-mechanical behavior of metallic glasses is proposed. The modeling framework considers the shear transformation zone (STZ) as the fundamental unit of deformation, and coarse-grains an amorphous collection of atoms into an ensemble of STZs on a mesh. By employing finite element analysis and a kinetic Monte Carlo algorithm, the modeling technique is capable of simulating glass processing and deformation on time and length scales greater than those usually attainable by atomistic modeling. A thorough explanation of the framework is presented, along with a specific two-dimensional implementation for a model metallic glass. The model is shown to capture the basic behaviors of metallic glasses, including high-temperature homogeneous flow following the expected constitutive law, and low-temperature strain localization into shear bands. Details of the effects of processing and thermal history on the glass structure and properties are also discussed.
منابع مشابه
Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal
study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal. " Physical Review B 81.6 (2010): 064204. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share ho...
متن کاملDynamics of shear-transformation zones in amorphous plasticity: nonlinear theory at low temperatures.
We use considerations of energy balance and dissipation to derive a self-consistent version of the shear-transformation-zone (STZ) theory of plastic deformation in amorphous solids. The theory is generalized to include arbitrary spatial orientations of STZs. Continuum equations for elasto-plastic material and their energy balance properties are discussed.
متن کاملNonequilibrium thermodynamics of driven amorphous materials. III. Shear-transformation-zone plasticity.
We use the internal-variable, effective-temperature thermodynamics developed in two preceding papers to reformulate the shear-transformation-zone (STZ) theory of amorphous plasticity. As required by the preceding analysis, we make explicit approximations for the energy and entropy of the STZ internal degrees of freedom. We then show that the second law of thermodynamics constrains the STZ trans...
متن کاملStick-slip instabilities and shear strain localization in amorphous materials.
We study the impact of strain localization on the stability of frictional slipping in dense amorphous materials. We model the material using shear transformation zone (STZ) theory, a continuum approximation for plastic deformation in amorphous solids. In the STZ model, the internal state is quantified by an effective disorder temperature, and the effective temperature dynamics capture the spont...
متن کاملCoarse-grained description of localized inelastic deformation in amorphous metals
The sequence of shear transformation events that lead to a shear band transition in amorphous metals is described by a spatially random coarse-grained model calibrated to obey the thermodynamic scaling relations that govern flow in a real glass. The model demonstrates that shear banding is a consequence of local shear transformation events that self-organize along planes of maximum resolved she...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012